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Abstract The general aim of this work is to calculate the extent of the equiaxed zone in
continuously cast steel products. Free equiaxed grains can grow only in undercooled liquid
regions. Undercooling of the bulk liquid occurs because the columnar dendrite tips growing from
the mould reject solutes in the liquid. The specific aim of this contribution is to calculate the
thermal and physical state of continuously cast steel long products assuming a columnar
solidification mode, taking into account the tip undercooling at the solidification front. A 2-D heat
transfer model has been developed where the columnar solidification mode is assumed. The
calculation of the undercooling at the advancing solidification front is coupled with the heat
transfer equation. The comparison between the results of the present model and the classical heat
transfer model indicates the importance of modelling the undercooling phenomenon. The
influence of the secondary cooling has also been studied.

1. Introduction
In the case of industrial processes, like continuous casting of steel, the observed
structure consists of dendritic crystals. The structure of these crystals can be
either columnar or equiaxed. The columnar structure develops from the surface
of the product and has a preferred growth axis mainly parallel to the thermal
gradient. Due to the columnar dendrite tip undercooling, a region where the
local temperature is lower than the liquidus temperature of the bulk liquid is
formed ahead of the solidification front. In this zone, free equiaxed grains can
grow with independent orientations from each other. As a result of this growth,
the columnar-to-equiaxed transition (CET) may occur and form the central
equiaxed zone.

The quality of the continuously cast steel depends largely on the process
parameters and on the ratio of the columnar to the equiaxed regions. It is
known that an equiaxed structure often presents less segregation (Alberny and
Birat, 1976) and is generally associated with better quality products. Numerous
mathematical and physical models have been developed to understand the
transport processes in continuous casting of steel and to predict the influence of
various casting parameters (Aboutalebi et al., 1995; Flint, 1990; Huang et al.,
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1992). None of these works, however, takes into account the dendritic growth
phenomena. Several works have already dealt with the problem of the
columnar-to-equiaxed transition, both numerically and experimentally (Hunt,
1984; Wang and Beckermann, 1994; Vannier, 1994; Jang and Hellawell, 1991),
yet only a few of them are directly applicable to the case of continuous casting
of steel. Etienne (1990) developed a 1-D heat transfer model for CET prediction
in continuous casting of steel where the tip undercooling and growth of the
equiaxed grains were taken into account. The effect of undercooling on the
thermal state, however, was not discussed. Moreover, such a 1-D model cannot
be directly extended for dealing with 2-D or 3-D geometry.

The present work is a preliminary step towards the coupling of the columnar
and equiaxed growths in continuous casting of steel and CET prediction. In
this study, a 2-D Finite Volume model has been developed in order to calculate
the thermal and the physical state of continuously cast steel long products, in
which only the columnar solidification is considered. This model couples a
classical heat transfer model at the macroscopic scale with a model of
microsegregation, which takes into account the dendrite tip undercooling at the
microscopic level. Although melt convection is neglected in this study, the
formalism introduced here can be extended in order to incorporate convection
in the liquid and its effects on the dendrite tip undercooling. The model is
applied to a case of continuous casting to indicate the importance of modelling
the undercooling phenomenon and to show the difference between the results
obtained with a classical heat transfer model and the model we have developed.

2. Heat transfer at the macroscopic scale
The basic difficulty in heat transfer description during solidification in
continuous casting of steel is the geometrical complexity of the solid-liquid
interface. Figure 1 presents the different regions during solidification in
continuous casting. One can distinguish the liquid bulk, the solid region and
the mushy zone. It is difficult to solve the heat transfer equation in each region
and then to apply the boundary conditions at the interface between the
different zones. It is more suitable to apply the general volume averaged
conservation equations where the liquid, the mushy zone and the solid are
described as a single continuous equivalent medium (Beckermann and
Viskanta, 1993; Voller and Prakash, 1987).

2.1 Model assumptions
The two-dimensional (2-D) heat transfer equation is derived on the basis of the
following assumptions:

. Heat transfer by convection in the liquid and mushy regions is
neglected. The liquid phase moves downwards at the casting velocity.

. The solid phase is rigid and moves downwards at the casting velocity.

. 2-D cartesian and cylindrical geometries are considered.
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. Although the thermophysical properties for solid and liquid phases of
steel (cp, �, �) are dependent of temperature and composition, they were
assumed to be constant and equal.

2.2 Governing equations
The governing equations have been derived on the basis of a continuum model
for binary alloys, as originally developed by Ganesan and Poirier (1990) and Ni
and Beckermann (1991). The heat averaged transport equation can be written
as follows:

@

@t
��lglhl � �sgshs� � ~r � ��lglhl~vl � �sgshs~vs� � ~r � �� ~rT� �1�

where � is the average thermal conductivity of steel:

� � gl�l � gs�s �2�
Neglecting the influence of solute, the enthalpies of the liquid and solid phases
can be defined as:
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It has been assumed that the reference enthalpy, hs�T0�, is equal to 0 when
T0 � 0. The average density and enthalpy are defined by:

� � gl�l � gs�s �5�

h � f lhl � f shs �6�

Moreover, assuming that there is no porosity, one can write:

f s � f l � 1 �7�

gs � gl � 1 �8�

With the simplified assumptions defined in section 2.1, the average enthalpy
and the enthalpy for the solid and liquid phases can be written as:

hs � cpT �9�

hl � cpT � L �10�

h � cpT � f lL �11�

The heat averaged transport equation can, thus, be written as:

@

@t
��h� � ~r � ��h~vc� � ~r � �� ~rT� �12�

The obtained system of equations consists of five relations (equations 7, 9, 10,
11, 12) and six unknown variables h, hl , hs, f l , f sand T . In order to close this
system of equations, it is necessary to establish a supplementary relation. This
relation is obtained by considering the solidification phenomena. It is possible,
in this way, to relate the solid mass fraction to the temperature such as:

fs �
0 if T > T�;
1 if T < Ts;

fs�T� if Ts < T < T�

8><>:
T� and Ts are the temperature defining the beginning of solidification and the
solidus temperature respectively. The macroscopic heat transfer equation is
coupled with a micro-model of columnar growth which is able to describe the
solute diffusion at the microscopic level and to determine the temperature
defining the beginning of solidification as well as the relation between the
temperature and the liquid mass fraction, fs�T�.
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3. Micro-model of columnar growth
Figure 2 shows the typical temperature profile for columnar dendritic grains
growing from a cooled mould wall towards the centre of a casting. The latent
heat of solidification is conducted through the dendrites to the cooled surface.
The temperature gradient is imposed by the process and the dendrite tip
temperature is primarily controlled by the diffusion of solutes in the liquid
ahead of the solidification front and by the condition of thermodynamic
equilibrium (Kurz and Fisher, 1989). The movement of the isotherms constrains
the dendrite growth velocity which determines the tip undercooling. The
interface temperature of the dendrite tip is, then, lower than the equilibrium
liquidus temperature of the bulk liquid.

The part of the bulk liquid located ahead of the solidification front, where the
temperature is lower than that of the equilibrium liquidus, is referred to as the
undercooled zone. In order to model this region, it is necessary to take into
account the dendrite tip undercooling. The model that has been used to
describe this phenomenon will be presented below.

3.1 Undercooling model
Several theoretical models have been proposed to describe the dendrite tip
undercooling (Trivedi, 1980; Kurz and Fisher, 1981). The KGT model by Kurz
et al. (1986), includes the undercooling that arises from solutal, curvature and
kinetic effects and is valid under high growth rates. The proposed micro-model
is similar to the KGT model, where only solutal undercooling is considered. For
the growth rates in continuous casting, the other effects can be neglected.
Although melt convection can influence the dendrite tip growth conditions
(Glicksman et al., 1995), its effect was not taken into account in the present
study. The specific features of our model of solute diffusion at the microscopic
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Figure 2.
Columnar solidification
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level are based on Ivantsov's (1947) solution for the diffusion field around a
paraboloidal dendrite tip and on the marginal stability criterion, generalised to
the case of a multicomponent alloy by Bobadilla et al. (1988). The dendrite tip
undercooling, �T�, which equals the difference between the equilibrium
liquidus temperature, associated to the bulk liquid composition, w0

i , and the
dendrite tip interface, T�, associated to the liquid composition at the dendrite
tip, can be expressed in the following way (1988):

�T� �
Xn

i�1

miw
0
i

 
1ÿ 1

1ÿ �1ÿ ki�Iv�Pi
c�

!
�13�

Pi
c �

v � rp

2Dl
i

�14�


i �
w�i ÿ w0

i

w�i � �1ÿ ki� � Iv�Pi
c� �15�

where, Iv, is the Ivantsov function; Pi
c, the solutal PeÂclet number; v, the interface

growth velocity; rp, the tip radius ; Dl
i , the diffusion coefficient in the liquid

phase; ki, the equilibrium partition ratio and mi , the liquidus slope. The relation
between the supersaturation, 
i, the tip composition, w�i , and the PeÂclet number
is given by equation (15).

Equation (13) shows that the dendrite tip undercooling depends on the
dendrite growth velocity, v, and the dendrite tip radius, rp. According to the
stability criterion developed by Langer and MuÈller-Krumbhaar (1988), the
observed tip radius, rp, is equal to the shortest wavelength of perturbations,
which can develop under the local growth conditions at the tip. Bobadilla et al.
(1988) proposed an extension of this result to the case of a multicomponent
alloy:

rp � 2�

����������������������������������
ÿPn

i�1 miGi
c�

i ÿ G

s
�16�

Gi
c � ÿ

v

Dl
i

�1ÿ ki�w�i �17�

�i � 1ÿ 2ki

2ki ÿ 1�
���������������������
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�
2�
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�2
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where Gi
c and G are the composition and temperature gradients respectively,

evaluated at the solid-liquid interface in the liquid phase. ÿ is the Gibbs-
Thomson constant and �i is a stability parameter.

The combination of equations (16, 18) gives a relation such as,
rp � f �rp; v;G�. If the dendrite growth velocity and the thermal gradient are
known, this equation can be solved by a substitution method in order to obtain
the dendrite tip radius rp. Then, relation (13) permits the evaluation of the
undercooling �T� and hence, that of T�.

The calculations of G and v, and therefore the dendrite tip undercooling,
require the knowledge of the thermal history of the cast product, which can be
obtained by the heat transfer model at the macroscopic scale. The calculations
made in this study have shown that the influence of the thermal gradient, G, on
the determination of the dendrite tip radius, rp, in equation (16) can be
neglected. Therefore, G was set to 0 (equation 16).

It should be noted that although the influence of melt convection was
neglected in this model, experimental studies carried out by Glicksman et al.
(1995) showed that the growth parameters (v, rp, Pi

c) are influenced by the
convective transport and that the Ivantsov solution tends to overestimate the
PeÂclet number as a function of undercooling. Some theoretical attempts have
been done to calculate the effect of natural or forced convection (Anath and Gill,
1991; Sekerka et al., 1995; Appolaire et al., 1998). Because of melt convection in
continuous casting, our model is likely to overestimate the dendrite tip
undercooling.

3.1.1 Calculation of the dendrite growth velocity. The observation of the
columnar structure in continuously cast products shows that the dendrites
grow from the surface towards the centre of the product with an orientation
angle, �, with the surface of the product as shown in Figure 3. This angle is due
to the disorientation of the dendrite tips, which grow mainly in the direction of
the thermal gradient, by the effort of fluid flow ahead of the solidification front
(Moukassi, 1990).

Figure 3.
Dendrite growth
direction
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As shown by equation (13), in order to determine the dendrite tip undercooling,
it is necessary to calculate the dendrite growth velocity, v. This parameter is
obtained by determining the position of the dendrite tips (fs � 0). It has been
assumed in this study that these positions can be described by a continuous
function, (y � ft�x�).

Figure 3 shows a schematic illustration of the solidification front. If the
dendrite tip position at time, t, is in M1, during a time interval, dt, due to the
extraction of the product, the dendrite axis is translated by a distance equal to:
dt � vc, and the dendrite tip advances to position M2, as shown in Figure 3.

The dendrite tip advances by distance dL and the dendrite growth velocity
is therefore equal to (dL=dt). Given the orientation of the dendrite growth axis,
�, it can be shown that the growth velocity can be written as:

v � vc

jcotg��� ÿ dft�x�
dx
j

������������������������
1� cotg���2

q
�19�

3.2 Solid fraction model
During the solidification of alloys, the latent heat is released over the mushy
zone and is related to the evolution of the fraction of solid, fs�t�. In classical heat
transfer models, the fraction of solid in the mushy zone is defined as a function
of temperature, fs�T�, at the macroscopic level. Depending on the assumption
made about the solute diffusion in the solid phase, the relation between the
solid fraction and temperature is expressed using the lever rule, Scheil or some
back-diffusion model, where solidification begins at the equilibrium liquidus.

To take into account the nonequilibrium conditions at the dendrite tip, it is
necessary to couple the undercooling model with the solidification path. The
solid fraction model proposed by Flood and Hunt (1987) for a binary alloy uses
a Scheil relation truncated at the dendrite tip composition. This approach is
easy to implement in a heat transfer model but the solute is not conserved. The
model by Giovanola and Kurz (1990) for binary alloys rapid solidification
calculations introduces a quadratic polynomial for low fractions of solid whose
parameters are calculated to insure solute conservation. McCarthy and Blake
(1996) developed a hybrid model of the ones of Flood and Hunt and Giovanola
and Kurz, where the solid fraction relationship is truncated at the dendrite tip
and solute conservation is assured by imposing the solute flux balance using
the method of Giovanola and Kurz.

Kattner et al. (1996) proposed an alternate method in order to conserve solute
by applying the lever rule at the dendrite tip temperature for the initial alloy
composition. This gives the fraction of solid that forms in the tip region and the
liquid composition which is equal to the tip composition (if the curvature
undercooling is neglected). The obtained liquid composition and the solid
fraction are then used as initial values for a solidification path calculated using
a Scheil or back-diffusion model. This method can be extended to
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multicomponent alloys if the diffusion coefficients in the liquid are taken as
identical in the tip undercooling calculation. For unequal values of Di, this
procedure does not conserve solute.

The approach used in the present model is similar to the one proposed by
Kattner et al. (1996). When the temperature of the dendrite tip is reached,
solidification proceeds at a constant temperature, T � T�, until the solid mass
fraction is equal to f �s;i , calculated by applying the lever rule to the nominal
composition at the temperature T�.

f �s;i �
w�i ÿ w0

i

w�i � �1ÿ ki� �20�

Relation (20) combined with equation (15) gives:

f �s;i � 
i � Iv

�
v � rp

2Di

�
�21�

This procedure yields to a different value of f �i for each solute element. For the
remaining solidification path, the calculations are performed using a lever rule
or Scheil model with starting values equal to the dendrite tip composition and,
f �s , the lowest of the fractions of solid ff �s;ig:

f �s � min�ff �s;ig� �22�

According to equation (21), relation (22) is met only for the element of solute
that has the greatest diffusion coefficient in the liquid phase. For this element,
the conservation of mass is assured. For the other solutes, however, our method
does not conserve mass and the relative error that we introduce can be
expressed in the following way:

�wi ÿ w0
i

w0
i

� �1ÿ ki��f �s;i ÿ f �s �
w�i
w0

i

�23�

Equation (23) shows that, except for the solute that diffuses the most in the
liquid phase, the effective average solute composition, �wi , that arises from the
assumptions of our method, is always greater than the initial composition for
the elements of solute for which ki is lower than unity. The estimated error that
we are making for the alloy used in this study, for the two limiting cases of low
and high dendrite growth rates (v=10ÿ4 m=s and v=10ÿ3 m=s), is given in
Table I along with the compositions, partition ratios, diffusion coefficients and
liquidus slopes. The relative error is lower that 5 per cent for Silicon and
Manganese, while it is high for the elements that have low partition and
diffusion coefficients, such as Sulphur and Phosphorus. This should not
influence the results given here since these elements are present only in small
quantities in the alloy.
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For the remaining solidification path, the relation between the solid mass
fraction and the liquid composition can be written in the following manner:

. Because of the relatively high back diffusion of carbon in the solid phase
within the mushy zone, the lever rule is applied to describe the
microsegregation of carbon in the following way:

wl
i � w�i �

1ÿ �1ÿ ki� � f �s
1ÿ �1ÿ ki� � fs

�24�

. For solutes, which do not diffuse in the solid phase, the Scheil relation is
used as follows:

wl
i � w0

i �
�

1ÿ fs

1ÿ f �s

��kiÿ1�
�25�

Assuming local equilibrium at the interfaces in the mushy zone, the local
temperature is related to the solute composition of the liquid phase via the
phase diagram by:

T � Tf �
Xn

i�1

mi � wl
i �26�

Solidification is finished when the solidus temperature, Ts, is reached. To
calculate Ts, we used a correlation published by Howe (1988), based on
experimental studies. Equations (26), (24) and (25) enable us to determine the
fs�T� relation in the mushy zone as shown in Figure 4.

4. Solution method
Due to symmetry reasons, the calculation domain consists of half of the vertical
section of the round product starting at its centre. The spatial discretisation is
based on the finite volume method as proposed by Patankar (1980), and the
adopted grid system consists of rectangular elements. The governing equation

Table I.
Initial liquid

composition, partition
ratio, liquidus slope,
diffusion coefficient,

f �s;i , and relative error
for each solute element

Solute C Si Mn S P

w0
i �wt pct� 0.75 0.2 0.65 0.007 0.02

ki 0.34 0.8 0.79 0.03 0.06
mi�K:�wt pct�ÿ1� ±62.3 ±18.7 ±5 ±33.5 ±33.5

Dl
i�m2:s� 2 10ÿ8 3.7 10ÿ9 3.4 10ÿ9 2.7 10ÿ9 3 10ÿ9

Dendrite growth rate: v � 10ÿ4m=s

f �s;i 0.05 0.17 0.13 0.21 0.2

��wi ÿ w0
i �=w0

i (per cent) 0 2.4 2.7 18 16

Dendrite growth rate: v � 10ÿ3m=s

f �s;i 0.12 0.33 0.34 0.38 0.36

��wi ÿ w0
i �=w0

i (per cent) 0 4.4 4.9 40 34
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for energy (equation 12) is discretised using a similar approach as proposed in
Combeau et al. (1990); M'Hamdi et al. (1997). The variables (enthalpy,
temperature, etc.) are calculated at the main grid points. The PeÂclet number in
the case of continuous casting is sufficiently large. Thus, for the convection
term, an upwind scheme was adopted. This procedure yields to a relation such
as:

aphp � bpTp �
Xnb

i�1

aihi �
Xnb

i�1

biTi � c �27�

where the subscript p is relative to a position in the mesh and nb is the number
of neighbouring grid elements. The average enthalpy, h, has been chosen as the
main variable for discretisation. For this purpose, the temperature is linearised
with a Newton's method:

T � T# � dT

dh
� �hÿ h#� �28�

The symbol # indicates the best estimated value of a variable. The
substitution of the temperature as expressed in equation (28) into equation (27)
allows to obtain a relation where the only unknown is the average enthalpy h.
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The calculation of (dT=dh) is done by using (11) and fs�T� relation in the
following way:

dT

dh

1

cp
if fs � 0;

1

cp
if fs � 1;

1

cp ÿ L dfs

dT

if 0 < fs < 1:

8>>>>>>><>>>>>>>:
The computation procedure is shown in Figure 5. The calculations start from
the steady state solution of classical heat transfer models (i.e. the undercooling
at the dendrite tips is not considered and the solidification begins at the
equilibrium liquidus temperature). The obtained enthalpy field is, then, an
input for the micro-model of columnar growth.

The first step is to calculate the dendrite growth velocity, v. Equation (19)
shows that in order to calculate the growth velocity, it is necessary to know the
location of the solidification front as a function of x, ft�x�, and its derivative.
This function is obtained from the solid mass fraction field. One can see on
Figure 6 that the determination of the location of the front from the volume
information gs leads to some error that we have tried to minimise.

In each column of the mesh, the first cell where the solidification front
(corresponding to the dendrite tips) is present (i.e. fs = 0), is determined (Figure
6). All these positions are, then, interpolated by a polynomial of Chebyshev
(y � P�x�). This yields to a continuous function that describes the solidification
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front and the bulk/mushy zone interface as shown in Figure 6. Assuming, in
equation (19), that:

ft�x�
dx
� P�x�

dx
�29�

and restricting the degree of the derivative of P�x� to 3, the dendrite growth
velocity can be calculated by equation (19) in the first position of each column
of the mesh where the solidification front is present (Figure 6). The dendrite tip
undercooling is, then, calculated by the micro-model of columnar growth, and
the temperature defining the beginning of solidification is calculated in each
column of the mesh. Since the metal moves downwards, and due to the
assumption that the solidification front can be described by (y � ft�x�), the
solidification path is the same for all positions belonging to the same column.
Using equation (11) and the solidification path, the model determines the
temperature and the mass fraction fields. This procedure will yield to a new
position of the dendrite tips. The calculation of the dendrite tip undercooling
modifies the position of the solidification front and the dendrite tip growth
velocity, which in its turn modifies the dendrite tip undercooling. An iterative
procedure is necessary to solve the non-linear set of equations.

Key

Positions where undercooling
is calculated

Interpolated solidification front

Figure 6.
Interpolation of the
positions of the
solidification front in the
mesh
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The temperature and the mass fraction fields are then introduced in the heat
transfer model (equation (27)). Since the solidification path has been modified, it
will yield to new values for (dT=dh). In order to reach the steady state situation,
it is necessary to couple the heat transfer model and the micro-model of
columnar growth. The discretised equations associated with the appropriate
boundary conditions were solved iteratively using a line by line method
(Patankar, 1980).

5. Boundary and initial conditions
The liquid surface at the top of the mould constitutes the upper boundary of the
calculation domain. Here, temperature across the top surface (y � 0) is simply
fixed to the casting temperature, Tc, and the liquid metal enters at the casting
velocity, vc. Calculations are performed only in a portion of height, H . This
creates an artificial outlet plane down the strand, where the solidified steel
leaves the domain. Across this plane, the normal gradient of temperature is set
to zero.

Figure 1 shows the boundary conditions along the cooled vertical surface,
x � R. In the primary cooling region, y 2 �0; y1�, a fixed heat flux density, �, is
imposed. The secondary cooling consists of four regions, y 2 �y1; y2� [ �y2; y3�
[�y3; y4� [ �y5; y6�. These cooling regions have heat transfer coefficients
denoted, h1, h2, h3 and h4, respectively. The regions in contact with air, the heat
flux from the strand surface to the environment takes place by radiation.
Hence, for y 2 �y4; y5� [ �y6;H �:

@T

@y
� �� � �T4 ÿ T4

ext� �30�

The initial condition at time t � 0 is defined as T�x; y� � Tc.

6. Modelling examples
The simulation work has been carried out for a multicomponent steel alloy in
the case of a round billet caster. The alloy composition, partition ratio and
liquidus slope are listed in Table I. The specifications of the continuous casting
system and the other thermophysical properties for the used alloy are reported
in Table II.

In the first example presented here, the model is applied to a case of
continuous casting to indicate the importance of modelling the undercooling
phenomenon and to show the difference between the results obtained with a
classical heat transfer model and the model we have developed. The
calculations have been done considering standard cooling conditions. In the
second example, the model is used to study the influence of the secondary
cooling on the extent of the undercooled region ahead of the solidification front.
For this last example, two calculations were performed. In the first one, a
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Table II.
Simulation conditions
and list of symbols

Symbol Variable Value

ai; anb; bi; c discretisation coefficients
cp specific heat capacity, J.kgÿ1:Kÿ1 670

cl
p specific heat capacity of the liquid phase, J.kgÿ1:Kÿ1

cs
p specific heat capacity of the solid phase, J.kgÿ1:Kÿ1

Dl
i diffusion coefficient in the liquid, mÿ2:s

f l liquid mass fraction
f s solid mass fraction
ft�x� solidification front interpolation function
G thermal gradient, K.mÿ1

Gc
i solutal gradient, wt pct.mÿ1

gl liquid volumic fraction
gs solid volumic fraction
h average mass enthalpy, J.kgÿ1

hl mass enthalpy of the liquid phase, J.kgÿ1

hs mass enthalpy of the solid phase, J.kgÿ1

Iv Ivantsov's function
ki equilibrium partition ratio coefficient
L latent heat of phase change, J.kgÿ1 2.5 105

mi liquidus slope, K.(wt pct)ÿ1

P�x� Chebyshev polynomial
Pi

c solutal PeÂclet number
rp dendrite tip radius, m
t time, s
Tc casting temperature, oC 1490.0
Tl liquidus temperature, oC 1473.4
Ts solidus temperature, oC 1373.9
T� temperature of the dendrite tip, oC
Tm phase-change temperature, oC 1528
Text ambient temperature, oC 20
vc casting velocity, m.minÿ1 0.7
v dendrite tip growth velocity, m.sÿ1

w0
i initial solute composition, wt pct

w�i solute composition at the solid-liquid interface, wt pct
� average conductivity, W.mÿ1:Kÿ1 30
� density, kg.mÿ3 7300
�l density of the liquid phase, kg.mÿ3

�s density of the solid phase, kg.mÿ3

� steel emissivity 1
� Stefan-Boltzman constant, W.mÿ2:Kÿ4 5.667 10ÿ8

ÿ Gibbs-Thomson coefficient, K.m 1.9 10ÿ7


i Supersaturation
� stability constant
Geometry
R Radius, m 0.12
H Height of solution domain, m 20.0
y0 distance, m 0.60
y1 distance, m 0.94
y2 distance, m 2.46

(continued)
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standard secondary cooling was applied below the mould region, while in the
other one, for the same heat flux in the mould region, a sharp secondary cooling
was considered.

The heat transfer coefficients for both standard and sharp secondary
coolings (hstdi

and hsharpi
) are also listed in Table II. The ambient temperature,

Text is set to 20ëC. In all of the cases presented here, the growth direction of the
columnar dendrites is considered to be perpendicular to the surface of the
product. The employed grid in the mould region consists of 35x50 regular
control volumes in the radial and axial directions respectively. For the rest of
the computational domain, a grid of 35x205 is used. The number of cells is
greater in the mould region where the determination of the solidification front
is sensible to the grid size. The calculations were performed until steady-state
solution was obtained with a time step of 10s.

6.1 Influence of undercooling on the thermal state
Figures 7 and 8 show the evolution of the calculated dendrite tip undercooling
and growth rate respectively along the solidification front. Because of the
intense heat transfer in the mould region, near the surface of the product, the
dendrites are growing quickly, and high growth rates are obtained. As the
dendrites grow towards the centre, the heat transfer is less intense because of
the already solidified shell, and the growth rates are smaller.

The undercooling values decrease in the same way as the growth rate and
range between 3K and 5K according to the position on the solidification front.
The highest values are located close to the surface. Moreover, from the centre of
the product to the middle of the radius, the undercooling varies very slightly.

To show the influence of the undercooling on the thermal state, Figures 9a
and 10a represent the temperature and liquid mass fraction fields when
constitutional undercooling is not considered, while Figures 9b and 10b
represent the same fields when the heat transfer calculations take into account
the influence of the undercooling at the dendrite tip. The thermal state of the
system is modified in the region near the boundary between the liquid bulk and
the mushy zone when the dendrite tip undercooling is taken into account.
Away from this region, the thermal fields are very similar.

Table II.

Symbol Variable Value

y3 distance, m 2.78
y4 distance, m 3.10
y5 diatance, m 3.42
Cooling
� heat flux in the mould, MW.mÿ2 1
hstd1; hsharp1 heat transfer coefficient, W.mÿ2:Kÿ1 520.0, 2299.0
hstd2; hsharp2 heat transfer coefficient, W.mÿ2:Kÿ1 362.0, 1045.0
hstd3; hsharp2 heat transfer coefficient, W.mÿ2:Kÿ1 360.0, 360.0
hstd4; hsharp2 heat transfer coefficient, W.mÿ2:Kÿ1 360.0, 360.0
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Figure 10b shows that when undercooling is considered, the position of the
solidification front is very different in the region close to the centre than in
Figure 10a (no undercooling). The front position is much lower than that
obtained with classical heat transfer models. Although the undercooling values
are greater close to the surface of the product than in the centre, the influence of
the undercooling on the position of the solidification front is much more
important in the centre. This is due to the fact that the temperature and solid
mass fraction gradients are much lower in the centre than on the surface, so
that one degree of undercooling has much more effect on the front position in
the centre than near the surface.
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6.2 Influence of the secondary cooling

Figure 12 shows the dendrite tip undercooling calculated by the model when
sharp cooling is applied below the mould region. The heat extraction is higher
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in this case and the dendrite tips advance quicker than with standard cooling.
The undercooling values are, therefore, slightly higher with sharp cooling.

In order to illustrate the effect of the secondary cooling on the undercooling
calculations, Figures 11a and 11b present the extent of the undercooled region
when both standard and sharp secondary coolings are considered respectively.
In the latter case, the position of the solidification front is higher in the casting
machine than with the standard cooling.
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As shown in Figure 11, the extent of the undercooled region with the sharp
cooling is narrower than with the standard cooling. In these conditions,
equiaxed grains are more likely to develop in the latter case and the equiaxed
zone will be reduced when a sharp cooling is applied. These tendencies were
experimentally observed in previous studies (Ameling et al., 1986; Etienne,
1991).

7. Conclusion
The present work is a preliminary step towards the modelling of the coupled
columnar and equiaxed growths in continuous casting of steel. In order to
model the columnar-to-equiaxed transition in continuous casting of steel, it is
necessary to take into account the undercooling at the dendrite tips. In this
study, a 2-D model has been developed in order to take into account the
influence of the columnar dendritic growth on heat transfer in continuous
casting of steel. The model couples a classical macroscopic heat transfer model
with a model of microsegregation and solutal undercooling on a microscopic
scale.

The model was first applied to show the influence of the undercooling on the
thermal and mass fraction fields. Results show that the calculated depth of the
liquid pool is higher in the case of coupled heat transfer and undercooling
calculations than obtained without taking into account the influence of the
dendritic growth on heat transfer. The dendrite tip undercooling is found to be
between 3 K and 5 K with standard cooling conditions. The model has also
been used to study the influence of the secondary cooling on the extent of the
undercooled region. When sharp secondary cooling is applied below the mould,
a marked effect is observed. The undercooled region is narrower than when
standard secondary cooling is applied. The application of a sharp secondary
cooling can lead to a reduction of the central equiaxed region as has been
observed experimentally.
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